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ABSTRACT

We considerthe problem of optimally filling a knapsack of fixed capacity by
choosing from among a collection of n objects of randomly determined weight and
value. Under very mild conditions on the common joint distribution of weight and
value, we determie the asymptotic value of the optimal knapsack, for large n. 4,P
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1 INTRODUCTION

The random version of the classical single-constraint, 0-1 linear programming

problem is given by

n

V. max >X. 6 (1.1)

subject to W< 1 6 0 E {0,1}
i=1

where the pairs (Wi, Xi) are assumed to be independent draws from a common

joint distribution Fwx. If we think of the pairs (W,, Xi) as the weights and values,

respectively, of a collection of n objects, then this problem can be thought of as

finding the collection of objects of maximum value which will fit in a "knapsack"

with weight capacity 1.

In this paper we shall compute the asymptotic value of the random

variables V, with increasing n, for a very large class of joint distributions

Fwx.

Frieze and Clarke (1984) computed the asymptotic value of this random knap-

sack problem for a particular Fwx (where W and X are mutually independent

and both uniformly distributed on the interval (0,1)) as part of their analysis of ap-

proximation algorithms for the deterministic knapsack problem. In a related paper,

Meante, Rinnooy Kan, Stougie, and Vercellis (1984) analyze a random knapsack

problem in which the knapsack capacity grows in proportion to the number n of

items. Under this assumption, the question as to the growth rate of V" is easily

resolved-the strong law of large numbers guarantees that Vn/n converges. Among

their results, Meante et al compute this limit. In contrast, when the knapsack ca-

pacity is fixed the growth rate of V depends on the joint distribution of weights

and values. This dependence is our main interest here.

In section 2 we state and prove our main result (Theorem 1) characterizing

the asymptotic value of V,,. In section 3 we present some examples. In one of

them (Example 2) we apply Theorem 1 to a multiconstraint knapsack problem of

Frieze and Clarke (1984) to obtain a new asymptotic upper bound for the value

of this problem. In fact, our upper bound turns out to be the asymptotic value

(Schilling (1988)). We also consider a class of examples in which weight and value

are functionally related.
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2 RESULTS

We define V, as in (1.1). Our goal is to compute the asymptotic value of V as

n --, oo. Let us begin with 2 easy cases.

(i) Suppose that P(W = 0 and X > 0) > 0. Then Vn grows linearly in n. To

prove this, let XP = Si, l{w=o}. Then E(X') = lim X1 +..+Xn' < liminf -n
n--oo n n--oo n

< limsup Vn < lim X1 + .. +-X = E(X) a.s. (The equalities follow from the
n--#co n n---0oo n

strong law of large numbers). Thus we shall require that W > 0.

(ii) Suppose that, for some t, < t a.s. Then, for all n, V, < t; Vn doesn't grow

at all. Thus we shall require that x be unbounded.w
We now officially assume the common joint distribution Fwx of the pairs (W, Xi)

satisfies

W > 0 and 0 < X < 1, the random variable is continuous,
and ts dnsit fx(Al)

and its density fw (t) is positive for all sufficiently large t.

(We shall also require a "regularity" assumption (A2), which we postpone stating

until after lemma 1 when we will have had a chance to motivate it.)

DEFINITIONS: Let (Zn) be a sequence of random variables, and (z) a sequence of

numbers. We write Zn - x. to mean that P(x(l - 0()) _< Zn xn(i + o())) -+ 1

as n --+ oo. As usual, o(i) denotes a sequence that converges to 0 as n -- oo.

This is the standard notion of "almost everywhere" for random combinatorics (as

in Bollabas (1985), e.g.).

For t > 0, let F(t) = E(W. l and G(t) = E(X. 1(2>t) .

Our analysis begins by collecting some simple facts about the functions F and G.

Lemma 1 (i) For all sufficiently large t, F(t) and G(t) are continuous and

monotone decreasing, and lirn F(t) = lim G(t) = 0.
t 00 t-00o

(ii) F- 1 (t) exists for all sufficiently small positive t, and lim F- (t) = 0o.

(iii) GoF-(t) is monotone increasing on some interval (0,c), and lim G o F-'(t) - 0.
t 0+

(iv) lir F-1 (t) 0
t--0+ t
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Proof: From assumption (Al) we can see that P(X > 1) decreases montonically to

0 as t -- oo. (i) follows almost at once, then (ii) follows from (i), and (iii) from (i)

and (ii). To prove (iv), note that

G(u) = E(X. 1{4>)) > E(uW . 1{2L>.}) = uF(u).

Let u = F-(t); then we have

G o F- 1 (t) > F-1 (t)t, i.e. G o F-l(t) > F-1(t),
t

and so (iv) follows from (ii).

In light of (iii), we let GoF-'(O) = 0. Thus GoF - is continuous at 0, increasing

to the right of 0, and has infinite derivative at 0. Any reasonable function with

these properties will be concave (i.e., lie above its chords) on some interval 10, C].

We shall assume from here on

(A2) for some E > 0, G o F-' is concave on the interval [0, C1.

The purpose of (A2) is to facilitate the proof of the following technical lemma.

Lemma 2 There exist sequences (t,,), (us) of positive numbers with the following

properties:

1
(i) For all n, F(tn) > - > F(u,,).

n

(ii) As n -- oo, nF(t,) --+ 1 and nF(ut) --+ 1.

(iii) As n - oo, tn(l - nF(t.))2 
- 00 and un(1 - nF(u4)2 -. 0.

(iv) As n oo, G(t ) -- 1 and G(u) -+ 1.
G o F- 1  ) G o F- 1()

Proof: Note that, for all r > 0, by Lemma 1(ii), for all sufficiently large n, F-1 1+
6)) .C2 > 1. Let N, = min{n : F-1(Q(1 +c)) > }. Now N8 -400 as e -40, so

there exists a sequence (6n) of positive numbers such that 6, -- 0 as n -- o, and

N6, < N6 2 < N63 < .... Finally, let

1 if n < N6

_ 6 if N6, n < N6,

6 if N6, n < N6,

etc.
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Now it is easy to check that c, -- o and F-1 (1(1 + e,,)) c2 -. oo as n -- oo.

Finally, let t. = F-'(!(1 + C,)). The parts of i-iii having to do with t follow easily.

To verify the t-part of iv, we require a sublemma.

Sublemma 3 Suppose that H is a non-negative, concave function on [0, e], and
H(ax)H(O) = 0. Then if a > 1 and ax E 10,e], then H(a- < a . I0 < a < 1, then

H(az)
H(x)

Suppose a > 1, then ax > x, and because of the concavity of H we have

H(ax) -H(x) H(x)

ax -x z

Therefore,

H(ax) + H(ax) - H(x) x
H(x) ax-x H(x)

The second assertion follows since 0 < a < 1 implies

H(x) - H(ax) H(ax)
x - ax ax

Now apply sublemma 3 with H =G o F- 1 , z =, and a = 1 + C.. We have, for all

large enough n,

G(t.) G o F-1 + C.))

Go F-1(;) G o F-1(Q)

On the other hand, since G o F 1 is increasing.

Go F-I((1 + C.))
Go F-'(!) >1

and the t-part of (iv) follows. The u-parts of lemma 2 are proved by replacing 1 +

everywhere by 1 - E. U
We now state and prove our main result:

Theorem 1 Vn n.G o F-(1), where Vn is as defined as in (1.1).

n

For t > 0 let W$ (t) = _W , >)
i=1i

n

and X,(t) = X.
i=1
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Now it is easy to compute E(W,(t)) = nF(t) and

Var(Wn(t)) < nE(W2 .l >t0)

!<tE(W.-1f>q1 ) since X < 1 and - > t imply W <

= nF(t)/t.

Let (t,) be as in lemma 2. We have

P(C,(tn) < 1) = P(VV,,(t,)- E(1V,,(t,)) < 1 - nF(t,))

<t(1 nF(tn) _ (by Chebyshev's inequality).

Thus, by lemma 2, P(IV,(t,) < 1) -+ 0 as n - oo. By a symmetrical argument,

P(Wln(u,) > 1) --* 0 as n -+ oo. Hence

P P(W,(t,) 1 > W,(un)) - 1 as n -- oo. (2.1)

Next recall the greedy algorithm for problem (1.1). Order the pairs (W, X) so
that : >1 > > ... > XTh1* If we let V, denote the value obtained in (1.1) by

W(1 ) - W( 2 ) - . W(n )

the greedy algorithm, then Vn' = X(i) + + X(k), where k is the greatest number
among 1,... ,n such that W(j) +...+W(,) < 1. In particular if IV,, (t) > 1 > Wn (u),
then kn(t) > V" > kn(u). Thus from (2.1) we have

P(Xn(t.) > Vr >_ n(un)) --, 1 as n --- oo. (2.2)

Finally compute,

E(X((t4) = nG(t.) and
Var(k(tn)) < nE(X2 .1f >_)

< nE(X. - >t)) since X < 1

= nG(t,),

so Var(tn)) = 1/nGC(t). Now by lemma 1(iv), as n -+ oo, nGoF( ) F - oo, so

by lemma 2(iv), nG(tn) --+ oo. Thus by Chebyshev's inequality, ^X(tn) ... nG(tn).

By another use of lemma 2(iv), we have k,(tn) - nG o F-'(1). By a symmetric
argument, applied to un, it can be shown that X (un) nG o F-1 (1). Thus, by
(2.2), V . nG o F-( ). But it is well known that Vn < V, < Vn' + 1; therefore

V - nG o F'(!), which completes the proof of theorem 1. U
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3 Examples

Example 1 (Frieze and Clarke, 1984). Consider the knapsack problem (1.1) where

W and X are mutually independent and both distributed uniformly of the interval

(0,1). For t > 1, we have

F(t) = E(W. 1{>t}) = 0 wdwd =

and nd G(t) = E(X. i>,) = fxdwdx 
= 1-.

S= E(w,)(o,1) 2 :Zf>tW) 3t

Therefore, by Theorem 1, V,, -nG o F-'(!) = \/ . This duplicates a result

originally obtained in Frieze and Clarke (1984).

Example 2 (Frieze and Clarke, 1984). Consider the m-dimensional knapsack prob-

lem
V= max = X6 (3.1)

subjectto X7=I W6,<1 fori=1,2,...,m, bj5E{0,1}.

The Wij and Xi are assumed to be mutually independent, and all uniformly dis-

tributed on the interval (0,1). This problem may be compared to two related

one-dimensional problems:

V= max X 1 Xj6, (3.2)

subject to Ej-= W,6, < 1 6 e { , 1},

where Wj =max{Wj,W 2j,...,W,,j} for j = 1,2,...,n and

V, max 7 X,5, (3.3)

subject to ; ji < 1 b5 E {0,1},

where
W =W +W 2 3 +..W, for j=1,2,...,n.

m

It is not hard to see that we have V < Vn < Vn. A series of computations, along

with Theorem 1, show that

(mm+)2) )  and V-, (m -2)!
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Hence

P 2)- (1-o(1))<Vn (m+1) (1+o(1) -- 1

(3.4)

as n --+ o0.

The lower bound in (3.4) duplicates a result in Frieze and Clarke (1984). The

upper bound in (3.4) is, so far as we know, new. Furthermore, it is sharp. Indeed,

it is shown in Schilling (1988) that

M1

v. ~( 1)(m + 2)!

Our third example relates the shape of the joint density of W and X near the x-axis

to the growth rate of the value of the knapsack.

Example 9: Suppose that for some c > 0, fwx(w,x) = aw'z12 on the set

(X, w) 1 > c}. Then, for t > c,

G(t) = f f {u,,z)I, },6' 02rtA xdwdx

a

(A1 + 1)(PI + 02 + 3)t0i+l

F = f f cWWoI xP2dwdx

a
(+I + 2)(#31 + 132 + 3)t01+ 2

Thus, by Theorem 1,

V " ~ -nG °o F-1( 1 n +,2 + (+2 ) ( 1 +2

n 1+023 n

(1+2)01+2 )( I~
flI± 1 (81+ 2 + 3)

The hypotheses of Theorem 1 do not require that W and X be jointly continuous,

only that X be a continuous random variable. When weight and value are related

in a deterministic fashion, Fwx may be singular with respect to Lebesgue measure

on (0,1)2, but X still nonetheless continuous. Our final example is such a case.
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Example 4. Consider the problem

V. max j=1 X6b (3.4)

subject to E!' X,"6, < 1 6b E {0, 1},

where a > 1, and each Xi is uniform on the interval (0,1).

Then

F(t) = E(X". 1{xct-I>,}) - +1

and

G(t) = E(X. 1{x-i>t}) =t (a-- )

so, by Theorem 1,
v. ~ ( + 1)(.inc}
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